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Theoretical Aircraft Overflight Sound Peak Shape 

Introduction and Overview 

This report summarizes work to characterize an analytical model of aircraft overflight noise peak 
shapes which matches well with real-world observations of peak shapes from the field. The underlying 
goal is to be able to use this model to investigate mathematically the behavior of various noise level 
metrics, with emphasis on the Federal Aviation Administration’s (FAA’s) customary metric for aircraft 
noise, the Day-Night Average Sound Level (DNL) — the logarithm of the weighted daily average sound 
energy. 

It is shown that overflight peaks for a typical track have a simple functional form in which the amplitude 
of the peak is coupled to its width. The more distant an aircraft overflight is, the smaller the peak 
amplitude, but the greater the peak width. Rather than falling off according to 1/r2 (r is the distance 
from the aircraft to the observer), as with most point source wave phenomena metrics, the integrated 
sound energy falling on an observer for a given peak falls off only as 1/r. This has ramifications for the 
behavior of the DNL metric, making it less sensitive to changes in aircraft altitude and path. (The 
relationship to DNL measurements is discussed in another paper – see this link.) 

The presentation is somewhat mathematical in nature, but is illustrated with many practical examples 
and graphs. The organization of what follows is summarized below: 
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Relevant Physics and Mathematics 

1) First Order Considerations 

To first order, we can compute the profile of an aircraft overflight noise peak based on the geometry of 
the overflight and the simple physics of sound attenuation with distance for a point source (∝ 1/r2). 
Assume that an aircraft is flying relative to an observer in a straight path with constant velocity, v, at a 
horizontal ground distance, d, and a constant altitude, h (see Figure 1). Also assume for now that any 

atmospheric attenuation of the sound is negligible relative to the 1/r2 fall off in intensity with distance; 
that there are no complications of anisotropy (e.g., engines louder in the rear than in front); that 
refractive properties of the air between the aircraft and the observer are negligible, and that the finite 
velocity of sound can be ignored for the time being (i.e., the observer hears the noise without delay). 
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Figure 1: Diagram of aircraft overflight geometry relative to a ground observer. 

At time, t=0, let the aircraft be at the point of closest approach to the observer (distance rmin). Let the 
aircraft emit sound with an intensity, I0 (energy per second). Then the sound intensity heard by the 
observer, Iobs, is: 

𝐈𝐨𝐛𝐬(𝐭) ∝
𝐈𝟎

𝐫𝟐(𝐭)
 (1) 

where    𝐫𝟐(𝐭) = 𝐫𝐦𝐢𝐧
𝟐 + (𝐯𝐭)𝟐  (2) 

and    𝐫𝐦𝐢𝐧
𝟐 = 𝐝𝟐 + 𝐡𝟐  (3) 

Then if Iobs(max) is the sound intensity heard by the observer at the point of closest approach of the 
aircraft, 

𝐈𝐨𝐛𝐬(𝐦𝐚𝐱) ∝
𝐈𝟎

𝐫𝐦𝐢𝐧
𝟐 =

𝐈𝟎

𝐝𝟐+𝐡𝟐  (4) 

From equations 1 — 4, we see that the general aircraft noise peak takes the form, 

𝐈𝐨𝐛𝐬(𝐭) ∝
𝐈𝐨𝐛𝐬(𝐦𝐚𝐱)

[𝟏+(
𝐯𝐭

𝐫𝐦𝐢𝐧
)𝟐]

    (5) 

Note that the “proportional” symbol, ∝ is used in Equations 1, 4, and 3 because there may be some 
atmospheric attenuation or refraction of the intrinsic sound level, I0, between the aircraft and observer 

over and above the 1/r2 falloff.  

This function (known as a Lorentzian function familiar in physics and as a Cauchy distribution in 
probability theory), as shown in the example in Figure 2, has the property that the half-amplitude width 
of the peak is given by,  

𝐯𝐭½ = 𝐫𝐦𝐢𝐧  or 
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𝐭½ =
𝐫𝐦𝐢𝐧

𝐯
=

√𝐝𝟐+𝐡𝟐

𝐯
  (6) 

 
Figure 2: Typical Lorentzian aircraft noise peak shape. The peak shown corresponds to a commercial aircraft 
flying at 4000 ft and with a velocity of 340 ft/sec (200 knots). The amplitude is set to 1000 intensity units for 
plotting convenience. The half-width is 11.8 sec. 

Geometrically, the half width occurs when the line from the observer to the aircraft makes a 45° angle 

with the line of closest approach and with the flight path to form a 1:1:√2 right triangle (see the sketch in 
Figure 1). 

So, for a given aircraft velocity and altitude, such as shown in Figure 2, we ask “How does the observed 
peak height and width change with the distance of closest approach?” From Equations 4 and 6, it is 
clear that the loudest and narrowest noise peak occurs when the plane flies directly overhead (i.e., the 

distance of closest approach, rmin, is the smallest). However, as the distance of closest approach of the 
aircraft increases — either because of higher altitude, h, or greater distance of the ground track from 
the observer, d — two things happen. First, the maximum observed peak amplitude changes by the 
reciprocal square of the distance to the aircraft (see Equation 4). Second, the peak half-width changes 
linearly with the distance of closest approach (see Equation 6).  

These opposite effects may seem counterintuitive but they are real for observed overflights and have a 
strong impact on common measures of aircraft overflight noise, such as the FAA’s DNL metric. 

To see how these effects play off against each other, consider the examples shown in Figure 3, where 
typical noise profiles are plotted for different altitudes (3,000 and 4,000 ft) and for various distances 
from direct overflight. The intensity level is normalized to 1000 for the loudest aircraft peak, flying 
directly overhead at 3,000 ft. The colored diamond-shaped markers indicate the locations of the half-
width points for the respective peaks. 
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Figure 3: Aircraft overflight noise profiles varying by ground track distance from the observer and altitude. 
The colored diamond-shaped markers indicate the locations of the half-width points. Note that the peak widths 
increase with decreasing maximum intensity (i.e., with increasing rmin). See Eqns 4 and 6. 

The 𝟏 𝐫𝐦𝐢𝐧
𝟐⁄  behavior of the peak maximum is clear — for an altitude increase from 3000 ft to 4000 ft 

and a lateral distance of 0 ft, the peak maximum drops by nearly 1/2 (i.e., 0.56 which is 3000/4000 
squared). At the same time, the peak half-width for this geometry increases by a factor of 1.33, from 8.8 
sec to 11.8 sec (i.e., 4000/3000). [Note that the 11.8 second width in Figure 2 shows up again here for 
the 4000 ft overflight.] 

2) Calculating Integrated Sound Energy 

Because common measures of noise level are based either on the area under sound intensity curves or 
on the average of the sound intensity levels over some period of time, it is useful to compute the area, 
E, under the noise intensity curve (see Equation 5) — i.e., the total sound energy in the noise peak. To 
do this, we note that equation 5 has the form: 

𝐈𝐨𝐛𝐬(𝐭) ∝
𝐀

𝟏+(𝜶𝐭)𝟐
         where A is Iobs(max) and α is v/rmin. 

Using a convenient table of integrals, we can show that, 

E = ∫ 𝐈𝐨𝐛𝐬(𝐭) dt
∞

−∞
 = 𝐀 ∫

𝟏

𝟏+(𝛂𝐭)𝟐
 𝒅𝒕

∞

−∞
=

𝐀

𝛂
 [𝐚𝐫𝐜𝐭𝐚𝐧(∞) − 𝐚𝐫𝐜𝐭𝐚𝐧(−∞)]  =  

𝐀 𝛑

𝜶
 

and so, 

E = 𝛑 
𝐈𝟎

𝐫𝐦𝐢𝐧
𝟐  

𝐫𝐦𝐢𝐧

𝐯
 =  𝛑 

𝐈𝟎

𝐯 𝐫𝐦𝐢𝐧
  (7) 

An interesting point is that whereas the peak maximum varies as 𝟏 𝐫𝐦𝐢𝐧
𝟐⁄ , the total energy under the 

curve (area) varies only more slowly as 𝟏/𝐫𝐦𝐢𝐧. This unusual fact will be important when we consider its 
implications for the choice of noise metrics and for which measure(s) might be more appropriate to 
estimate subjective effects of noise. 
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3) Other Considerations for the Simple Model 

Even under the simplifying assumptions in the first order derivation above, two additional influences on 
the peak shape are important to consider: 

1. The velocity of sound is finite and this affects the delay and shape of the noise peak as heard by 
an observer (as opposed to what is generated at the aircraft). This common phenomenon is 
called the Doppler effect, which we hear all the time with passing trains or other moving objects 
that emit sounds. 

2. When the aircraft is relatively far from the point of closest approach, the sound must pass 
through a significantly longer air column so that sound intensity loss by absorption and 
scattering, over and above the 1/r2 factor, cannot be ignored. Typically, these effects are 
frequency dependent, in that higher frequency sounds are lost in transit more than the lower 
frequencies. One hears this as an aircraft approaches from a distance and sounds much more 
like a low frequency rumble than when it is near and more of the full sound spectrum is audible. 

a) Velocity-of-Sound (or Doppler) Effects 

As the aircraft approaches the point of closest approach, the time of arrival of noise sounds at the 
observer is compressed and as the aircraft leaves the point of closest approach, the time of arrival of 
sounds at the observer is stretched out. Using the geometry in Figure 1, the equation describing this 
effect is simple. If ta is the time the sound is generated at the aircraft, tobs is the time it is heard by the 
observer on the ground, r(ta) is the distance between the observer and the aircraft at time ta, and vs is 
the velocity of sound, then: 

tobs = ta + r(ta)/vs  (8) 

So, for example, if we convert Figure 2 (which was plotted against time at the aircraft, i.e., no delay) 
into a plot of what the observer on the ground will hear, we get the peak shown in Figure 4. One can 
see that the peak is delayed by 3.6 sec because of the time it takes the sound to travel from the aircraft 
to the ground.  

Figure 4: Noise peak shifted by 3.6 seconds because of the finite velocity of sound. 
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If we then align the arrival time of the observed peak with that of the first order peak, we get Figure 5. 
Here one can see the shape distortion caused by the velocity of sound — the compression of the 
leading edge of the peak and the expansion of the trailing edge relative to the peak maximum. 

 
Figure 5: Peak realigned with 1st order peak to see the shape distortion from the finite velocity of sound. Note the 
compression of the upslope and the dilatation of the downslope of the peak. 

b) Atmospheric Loss Effects 

The attenuation of the sound by scattering, absorption, and refraction while traveling increasing 
distances through the air is another important effect on how the observer hears the noise generated by 
the aircraft. Again a simple model suffices if the attenuation factor is small. Let I(r) be the sound 
intensity at distance r along its path (basically following the 1/r2 law), let f be the attenuation factor per 
unit distance for sound traveling in air, let Iobs(r) be the intensity heard at the observer without 

attenuation, and let 𝐈𝐨𝐛𝐬
𝐚𝐭𝐭𝐞𝐧𝐮𝐚𝐭𝐞𝐝 be the attenuated sound heard by the observer. Then we can write the 

(simplified) differential equation: 

𝐝𝐈 ≈ −𝐟 𝐈 𝐝𝐫  

Then, integrating: 

𝐥𝐧 𝐈 ≈ −𝐟 𝐫 + 𝐂    where C is an arbitrary constant. 

Then, setting boundary conditions, 

𝐈𝐨𝐛𝐬
𝐚𝐭𝐭𝐞𝐧𝐮𝐚𝐭𝐞𝐝(𝐫) ≈ 𝐈𝐨𝐛𝐬(𝐫) 𝐞−𝐟 (𝐫−𝐫𝐦𝐢𝐧);     𝐫 > 𝐫𝐦𝐢𝐧   (9) 

If we apply this additional adjustment to the peak shown in Figure 5, using an attenuation factor of 
0.003% per foot, we get Figure 6. One can see that the sound intensity in the wings of the peak is 
decreased by an amount that increases with distance. 
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Figure 6: Adjustment of the peak in Figure 5 by applying the correction for atmospheric attenuation from 
the source. 

4) Summary of Parameters in the Simple Model 

With this fairly simple model, we can fit actual aircraft overflight sound peak data by adjusting the 
following parameter set: 

1. The maximum observed peak sound intensity, 𝐈𝐨𝐛𝐬(𝐦𝐚𝐱). 

2. The values of the aircraft speed, v, and its distance of closest approach, 𝐫𝐦𝐢𝐧; actually their 

ratio, 𝐫𝐦𝐢𝐧 𝐯⁄ , suffices to set the basic geometry of the noise peak. 

3. The velocity of sound in the air, vs, depending on weather conditions. 

4. The attenuation coefficient, f, for sound losses (other than the 1/r2 law) during propagation 
through the air, again depending on atmospheric conditions. 

5) Other Real-World Complexities 

Up until now, we have assumed a simplified overflight model: straight-line flight path, constant altitude 
and distance from the flight path, constant velocity, constant aircraft noise emission, and uniform 
weather conditions. What happens to the model if the plane is descending to land, is slowing down for 
an approach, is making a turn to align for an approach, extends flaps or air brakes so it emits more 
noise, or flies through an inversion or cloud layer? The answer is that the basic physics stays the same 
but all or some of the model parameters become functions of time. So, for example, if the plane is 
changing altitude, the parameter h, and also the parameter rmin, become functions of time. If the plane 
is making a turn, we either have to approximate its path as a series of line segments or adjust the 
geometry in Figure 1 to make the path some 3-dimensional arc. This all makes calculating the peak 
shape, area, etc. in closed form more difficult analytically. Nevertheless, as in the calculus, if we break 
the path into small enough steps (ẟt ~ ε), the calculation (possibly numerical) follows the same logic as 
discussed above. Fortunately, major segments of commercial flight paths are fairly straight (passengers 
don’t like to be jostled around), and the formulas above are pretty good approximations.  
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Some Analysis and Commentary 

1) Quality of the Model Fit to Raw Data 

A first question is, “How well does the Lorentzian peak profile, described above, approximate what is 
actually measured in real world noise recordings?” Figure 7 shows two sets of data taken at random 
from a sound monitor recording collected by the author on August 3, 2015, in north Palo Alto, CA. The 
first set of plots shows the raw data for a 73.5 dB overflight peak occurring at about 40 minutes past 
midnight (blue line), with a Lorentzian fit (red line). The second set shows the raw data for a 65 dB peak 
occurring at about 6:55 AM (green line), with a Lorentzian fit (purple line). 

 
Figure 7: Comparison of raw noise peak data with Lorentzian fits for two overflight events on August 3, 2015, 
in north Palo Alto, CA. 

The parameters were adjusted to optimize the fit and, subjectively, the fits are quite reasonable 
approximations to the raw data, given the noisy context of the raw data collected, especially for the 65 
dB peak. For the 73.5 dB peak, the value of v/rmin is 0.157 and the atmospheric attenuation coefficient 
is estimated at 0.017% per foot. For the 65 dB peak, the value of v/rmin is 0.114 and the atmospheric 
attenuation coefficient is about 0.015% per foot. The velocity of sound is assumed to be just over 1100 
ft/sec in both cases. If the aircraft producing the peaks were flying at about 500 ft/sec (300 knots), for 
the 73.5 dB peak, it would be at approximately 3200 ft altitude and for the 65 dB peak at about 4400 ft 
altitude. 

2) Practical Limits of Peak Detection against Background Noise 

One more practical measurement issue remains to be noted. Since the aircraft noise is competing with 
general ambient background noise, the observer can only detect the aircraft noise if it is intense enough 
so that its sound signature (amplitude, duration, frequency content, etc. corresponding to jet, propeller, 
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or helicopter aircraft) stands out above the background. This means that we must set a detection 
threshold and measure peak width based on some threshold sound intensity level on the vertical axis of 
Figure 2. If we arbitrarily choose thresholds of 5%, 10%, and 20% of the loudest aircraft sound intensity 
under simulated data collection circumstances, i.e., the observed noise for a direct overflight at 4,000 ft 
and 340 ft/sec (200 knot) velocity, we can plot expected detectable noise peak widths as a function of 
the aircraft altitude and observer’s distance from the ground track (see Figure 3). 

The examples in Figure 8 are constructed to show what happens when the aircraft altitude is nearly 
constant, and the observer’s distance from the aircraft ground track (x axis) and the threshold for 
detectability of the aircraft noise above background are varied. This illustrates a situation such as one 
might find near a waypoint at which the aircraft altitude is fairly well established but different observers 
hear the crossing from different distances and background noise settings. Clearly the apparent peak 
duration varies considerably with distance and threshold.  

Of course, variations in aircraft speed, inherent noise intensity generated, and atmospheric 
transmission and refractive conditions will also affect the perceived noise profile at the observer.  

 
Figure 8: Overflight peak widths vs observer distance from ground track and detection threshold. Aircraft 
altitude is held relatively fixed. 

Peak widths have an effect on the observer through the length of time that daily activities are disrupted 
by overflight noise. As might be expected, detected durations are largest in relatively quiet background 
noise periods for which the lower detection thresholds apply. Even though the theoretical peak half-

width increases with rmin,(see Equation 6), this effect is dominated by the stronger peak amplitude 

decrease ~𝟏 𝐫𝐦𝐢𝐧
𝟐⁄  (see Equation 4) in determining when peak boundaries are detectable. We believe 

that the peak amplitude factor is more important in determining interference with human activity.  
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